Abstract

Copper ions are important cofactors of many metalloproteins. The binding dynamics of proteins to the copper ion is important for biological functions but is less understood at the microscopic level. What are the key factors determining the recognition and the stabilization of the copper ion during the binding? Our work investigates the binding dynamics of the copper ion with a simple system (the N-terminus of PrP) using simulation methods. To precisely characterize the protein?ion interaction, we build up an effective copper?peptide force field based on quantum chemistry calculations. In our model, the effects of charge transfer, protonation/deprotonation, and induced polarization are considered. With this force field, we successfully characterize the local structures and the complex interactions of the octapeptide around the copper ion. Furthermore, using an enhanced sampling method, the binding/unbinding processes of the copper ion with the octapeptide are simulated. Free-energy landscapes are generated in consequence, and multiple binding pathways are characterized. It is observed that various native ligands contribute differently to the binding processes. Some residues are related to the capture of the ion (behaving like ?arm?s), and some others contribute to the stabilization of the coordination structure (acting like ?core?s). These different interactions induce various pathways. Besides, a nonnative binding ligand is determined, and it has essential contributions and modulations to the binding pathways. With all these results, the picture of copper?octapeptide binding is outlined. These features are believed to happen in many ion?peptide interactions, such as the cooperative stabilization between the coordinations with neighboring backbone nitrogens and an auxiliary intermediate coordination with the neighboring oxygen from the N-terminal direction. We believe that our studies are valuable to understand the complicated ion?peptide binding processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.