Abstract

Coagulation factor IX/coagulation factor X binding protein from the venom of Agkistrodon halys Pallas (AHP IX/X-bp) is a unique coagulation factor IX/coagulation factor X binding protein (IX/X-bp). Among all IX/X-bps identified, only AHP IX/X-bp is a Ca(2+)- and Zn(2+)-binding protein. The binding properties of Ca(2+) and Zn(2+) ions binding to apo-AHP IX/X-bp and their effects on the stability of the protein have been investigated by isothermal titration calorimetry, fluorescence spectroscopy, and differential scanning calorimetry. The results show that AHP IX/X-bp has two metal binding sites, one specific for Ca(2+) with lower affinity for Zn(2+) and one specific for Zn(2+) with lower affinity for Ca(2+). The bindings of Ca(2+) and Zn(2+) in the two sites are entropy- and enthalpy-driven. The binding affinity of AHP IX/X-bp for Zn(2+) is 1 order of magnitude higher than for Ca(2+) for either high-affinity binding or low-affinity binding, which accounts for the existence of one Zn(2+) in the purified AHP IX/X-bp. Guanidine hydrochloride (GdnHCl)-induced and thermally induced denaturations of Ca(2+)-Ca(2+)-AHP IX/X-bp, Zn(2+)-Zn(2+)-AHP IX/X-bp, and Ca(2+)-Zn(2+)-AHP IX/X-bp are all a two-state processes with no detectable intermediate state(s), indicating the Ca(2+)/Zn(2+)-induced tight packing of the protein. Ca(2+) and Zn(2+) increase the structural stability of AHP IX/X-bp against GdnHCl or thermal denaturation to a similar extent. Although Ca(2+) and Zn(2+) have no obvious effect on the secondary structure of AHP IX/X-bp, they induce different rearrangements in local conformation. The Zn(2+)-stabilized specific conformation of AHP IX/X-bp may be helpful to its recognition of the structure of coagulation factor IX. This work suggests that in vitro, Ca(2+) plays a structural rather than an active role in the anticoagulation of AHP IX/X-bp, whereas Zn(2+) plays both structural and active roles in the anticoagulation. In blood, Ca(2+) binds to AHP IX/X-bp and stabilizes its structure, whereas Zn(2+) cannot bind to AHP IX/X-bp owing to the low Zn(2+) concentration. AHP IX/X-bp prolongs the clotting time in vivo through its binding only with coagulation factor X/activated coagulation factor X.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.