Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by the extracellular deposition in the brain of aggregated beta-amyloid peptide, presumed to play a pathogenic role, and by preferential loss of neurons that express the 75-kD neurotrophin receptor (p75NTR). Using rat cortical neurons and NIH-3T3 cell line engineered to stably express p75NTR, we find that the beta-amyloid peptide specifically binds the p75NTR. Furthermore, 3T3 cells expressing p75NTR, but not wild-type control cells lacking the receptor, undergo apoptosis in the presence of aggregated beta-amyloid. Normal neural crest-derived melanocytes that express physiologic levels of p75NTR undergo apoptosis in the presence of aggregated beta-amyloid, but not in the presence of control peptide synthesized in reverse. These data imply that neuronal death in Alzheimer's disease is mediated, at least in part, by the interaction of beta-amyloid with p75NTR, and suggest new targets for therapeutic intervention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.