Abstract

A 120-kDa protein was purified from brush border membrane vesicles of the tortricid moth Epiphyas postvittana (Walker) based both on its activity as an aminopeptidase and the ability to bind the Bacillus thuringiensis δ-endotoxin Cry1Ac. The purified enzyme had a pI of 5.6 and was a leucine aminopeptidase, with some isoleucine, phenylalanine and tryptophan aminopeptidase activity. Further characterisation showed that the protein was also able to bind Cry1Ba. During purification, the molecular weight of the protein decreased from 120 to 115 kDa due to the loss of a glycophosphatidinyl anchor. The protein was N-terminally sequenced and, using this information and conserved regions within other insect aminopeptidase-N (APN) sequences, redundant primers were designed to amplify the aminopeptidase coding sequence from E. postvittana midgut cDNA. The predicted protein sequence from the full-length cDNA was most closely related to the APN protein sequence from Heliothis virescens (61% identity) and shared other features of insect APNs including a Zn 2+ binding site motif and four conserved cysteines. The E. postvittana was expressed in Sf9 cells using baculovirus, yielding a protein of molecular weight 130 kDa, but with unchanged N-terminal sequence. Purified recombinant protein bound both Cry1Ac and Cry1Ba by ligand blot assays. However, despite the protein being expressed on the external surface of the Sf9 cells, it bound neither Cry1Ac nor Cry1Ba in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.