Abstract

First, we describe a preparation of sealed unilamellar lipid vesicles. When this preparation was subjected to sucrose density gradient centrifugation, two rather uniform fractions emerged, one consisting of lighter lipid-rich vesicles with average diameters ranging over 150-200 nm (fraction I), the other consisting of heavier vesicles with average diameters ranging over 30-70 nm (fraction II). When the lipid mixture containing dimyristoylglycerophosphocholine, cholesterol, dipalmitoylglycerophosphoserine and dipalmitoylglycerophosphoethanolamine at molar ratios of 54:35:10:1 was reconstituted with alpha- and beta gamma-subunits of Go-proteins purified to homogeneity from bovine brain, the lipid-rich lighter vesicle fraction I took up these subunits nearly exclusively. Whereas, when a beta 1-adrenoceptor preparation purified from turkey erythrocyte membranes was reconstituted, it was found nearly completely in the smaller heavier vesicle fraction II where it was incorporated inside-out. On co-reconstitution of either alpha o or beta gamma alone with beta 1-adrenoceptors, some of these subunits appear together with beta 1-adrenoceptors in the small vesicle fraction II, but much more alpha o was bound to the receptor in the presence of beta gamma-subunits. The observations reported are novel and surprising in several respects: firstly, they suggest that beta gamma-subunits can bind to the non-activated beta 1-receptor where they may serve as an anchor for alpha-subunits. Secondly, the binding of alpha o- and beta gamma-subunits to the beta 1-adrenoceptors enhances the basal GTPase activity of alpha o. Thirdly, since the binding domains of the beta 1-adrenoceptor for G-proteins were facing outwards in our sealed vesicle preparations, it follows that interactions of G-proteins with the beta-receptor can occur at the aqueous membrane interface as was postulated originally by M. Chabre [Trends Biochem. Sci. 12, 213-215 (1987)] for the transducin-rhodopsin interactions. Finally, the binding of Go-subunits from bovine brain to a beta 1-adrenoceptor from turkey erythrocytes was not expected, since these polypeptides are not likely to be physiological partners.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.