Abstract

The binding of ornithine and inosine 5'-monophosphate (IMP), positive allosteric effectors, and of uridine 5'-monophosphate (UMP), a negative allosteric effector, to carbamyl-phosphate synthetase from Escherichia coli was studied by the technique of equilibrium dialysis. The monomeric form of the enzyme has one binding site for each of the three allosteric ligands. The binding of UMP is inhibited by ornithine, IMP, MgATP, and ammonia (also a positive allosteric effector). Bicarbonate, L-glutamine, and adenosine 5'-triphosphate (ATP) (Mg2+ absent) had no effect on the binding of UMP. The affinity of the enzyme for UMP was increased if phosphate buffer was replaced by 2-amino-2-hydroxymethyl-1,3-propanediol (Tris) buffer. The binding of ornithine was inhibited by UMP and ammonia, enhanced by MgATP, MgADP, and IMP, and not affected by bicarbonate, L-glutamine, or ATP (Mg2+ absent). Ornithine and ammonia probably bind to the same site on the enzyme. The binding of IMP is facilitated by ornithine and ammonia, but is inhibited by MgATP or ATP, indicating that adenine nucleotides can also bind to the IMP binding site. The results of these binding studies are consistent with a scheme previously proposed in which the allosteric effectors function by stabilizing one or the other of two different conformational states of the enzyme which are in equilibrium with each other (Anderson, P.M., and Marvin, S.V. (1970), Biochemistry 9, 171). According to this scheme, binding of the substrate MgATP is greatly facilitated when the enzyme exists in the conformational state stabilized by the positive allosteric effectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call