Abstract

Crystal structures of a genogroup II.4 human norovirus polymerase bound to an RNA primer–template duplex and the substrate analogue 2′-amino-2′-deoxycytidine-5′-triphosphate have been determined to 1.8 Å resolution. The alteration of the substrate-binding site that is required to accommodate the 2′-amino group leads to a rearrangement of the polymerase active site and a disruption of the coordination shells of the active-site metal ions. The mode of binding seen for 2′-amino-2′-deoxycytidine-5′-triphosphate suggests a novel molecular mechanism of inhibition that may be exploited for the design of inhibitors targeting viral RNA polymerases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.