Abstract

We have recently reported that annexin II serves as a membrane receptor for 1alpha,25-(OH)(2)D(3) and mediates the rapid effect of the hormone on intracellular calcium. The purpose of these studies was to characterize the binding of the hormone to annexin II, determine the specificity of binding, and assess the effect of calcium on binding. The binding of [(14)C]-1alpha,25-(OH)(2)D(3) bromoacetate to purified annexin II was inhibited by 1alpha, 25-(OH)(2)D(3) in a concentration-dependent manner. Binding of the radiolabeled ligand to annexin II was markedly diminished by 1alpha, 25-(OH)(2)D(3) at 24 microM, 18 microM, and 12 microM and blunted by 6 microM and 3 microM. At a concentration of 12 microM, 1beta, 25-(OH)(2)D(3) also diminished the binding of [(14)C]-1alpha, 25-(OH)(2)D(3) bromoacetate to annexin II, but cholecalciferol, 25-(OH)D(3), and 24,25-(OH)(2)D(3) did not. Saturation analyses of the binding of [(3)H]-1alpha,25-(OH)(2)D(3) to purified annexin II showed a K(D) of 5.5 x 10(-9) M, whereas [(3)H]-1beta,25-(OH)(2)D(3) exhibited a K(D) of 6.0 x 10(-9) M. Calcium, which binds to the carboxy terminal domain of annexin II, had a concentration-dependent effect on [(14)C]-1alpha,25-(OH)(2)D(3) bromoacetate binding to annexin II, with 600 nM calcium being able to inhibit binding of the radiolabeled analog. The inhibitory effect of calcium was prevented by EDTA. Homocysteine, which binds to the amino terminal domain of annexin II, had no effect on the binding of the bromoacetate analog to the protein. The data indicate that 1alpha,25-(OH)(2)D(3) binding to annexin II is specific and suggest that the binding site may be located on the carboxy terminal domain of the protein. The ability of 1beta,25-(OH)(2)D(3) to inhibit the binding of [(14)C]-1alpha, 25(OH)(2)D(3) bromoacetate to annexin II provides a biochemical explanation for the ability of the 1beta-epimer to inhibit the rapid actions of the hormone in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.