Abstract
Methylenetetrahydrofolate dehydrogenase (MTHFD2) is a mitochondrial enzyme involved in 1 C metabolism that is upregulated in various cancer cells, but absent in normal proliferating cells. Xanthine derivatives are the first selective inhibitors of MTHFD2 which bind to its allosteric site. Xanthine derivatives (including the co-crystallized inhibitors) were herein interrogated by molecular/induced-fit docking, MM-GBSA binding free energy calculations and molecular dynamics simulations in both MTHFD2 and MTHFD1 (a close homolog expressed in healthy cells). The gained insights from our in silico protocol allowed us to study binding mode, key protein-ligand interactions and dynamic movement of the allosteric inhibitors, correlating with their experimental binding affinities, biological activities and selectivity for MTHFD2. The reported conformational changes with MTHFD2 upon binding of xanthine derivatives were furthermore evaluated and confirmed by RMSF analyses of the MD simulation trajectories. The results reported herein are expected to benefit in the rational design of selective MTHFD2 allosteric inhibitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.