Abstract

Tyrosine kinase inhibitors (TKIs) are antitumor compounds that prevent the phosphorylation of proteins in a biological environment. However, the multitarget performance of TKIs promotes them as possible candidates for drug repositioning. In this work, interaction and inhibition studies through spectroscopic and computational techniques to evaluate the binding effectiveness of lapatinib and pazopanib TKIs to acetylcholinesterase (AChE) are reported. The results indicated potent inhibition at the μM level. The types of inhibition were identified, with pazopanib acting through non-competitive inhibition and lapatinib through acompetitive inhibition. The fluorescence suppression studies indicate a static mechanism for lapatinib-AChE and pazopanib-AChE systems, with a binding constant in the order of 105 M-1. The obtained thermodynamic parameters reveal interactions driven by van der Waals forces and hydrogen bonds in the lapatinib-AChE system (ΔH° and ΔS° < 0). In contrast, the pazopanib-AChE system shows positive ΔH° and ΔS°, characteristic of hydrophobic interactions. The Foster resonance energy transfer study supports the fluorescence studies performed. The 3D fluorescence studies suggest changes in the microenvironment of the tryptophan and tyrosine residues of the protein in contact with lapatinib and pazopanib. The results suggest effective inhibition and moderate interaction of the drugs with AChE, making them interesting for conducting more in-depth repositioning studies as AChE inhibitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.