Abstract

The conversion of immature noninfectious HIV-1 particles to infectious virions is dependent upon the sequential cleavage of the precursor group-specific antigen (Gag) polyprotein by HIV-1 protease. The precise mechanism whereby protease recognizes distinct Gag cleavage sites, located in the intrinsically disordered linkers connecting the globular domains of Gag, remains unclear. Here, we probe the dynamics of the interaction of large fragments of Gag and various variants of protease (including a drug resistant construct) using Carr-Purcell-Meiboom-Gill relaxation dispersion and chemical exchange saturation transfer NMR experiments. We show that the conformational dynamics within the flaps of HIV-1 protease that form the lid over the catalytic cleft play a significant role in substrate specificity and ordered Gag processing. Rapid interconversion between closed and open protease flap conformations facilitates the formation of a transient, sparsely populated productive complex between protease and Gag substrates. Flap closure traps the Gag cleavage sites within the catalytic cleft of protease. Modulation of flap opening through protease-Gag interactions fine-tunes the lifetime of the productive complex and hence the likelihood of Gag proteolysis. A productive complex can also be formed in the presence of a noncognate substrate but is short-lived owing to lack of optimal complementarity between the active site cleft of protease and the substrate, resulting in rapid flap opening and substrate release, thereby allowing protease to differentiate between cognate and noncognate substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.