Abstract

This work demonstrates binding interactions of two cationic gemini surfactants, 12-4-12,2Br- and 12-8-12,2Br- with gold nanoparticles (AuNPs)-conjugated bovine serum albumin (BSA) presenting binding isotherms from specific binding to saturation binding regions of surfactants. The binding isotherm has been successfully constructed using Förster's resonance energy transfer (FRET) and nanometal surface energy transfer (NSET) parameters calculated based on fluorescence quenching of donor, tryptophan (Trp) residue by acceptor, AuNP. Energy transfer efficiency (ET) changes due to alteration in the donor-acceptor distance when surfactants interact with bioconjugates. A solid reverse relationship between α-helix and β-turn contents of BSA-AuNPs-conjugates is noted while interacting with surfactants. 12-8-12,2Br- shows stronger binding interactions with BSA-bioconjugates than 12-4-12,2Br-. The effect of bioconjugation on secondary/tertiary structures of BSA in the absence and presence of a surfactant is studied through circular dichroism, fluorescence, and Fourier transform infrared spectroscopic measurements. Motional restrictions imposed by AuNPs on Trp residues of folded and unfolded BSA have been investigated using red edge emission shift (REES) measurements. Finally, the molecular docking results present the modes of interactions of 12-4-12,2Br- and 12-8-12,2Br-, and Au-nanoclusters (Au92) with BSA. An approach to describe the binding isotherms of surfactants using AuNPs-bioconjugates as optical-based molecular ruler and possible effects of AuNPs on microenvironment and conformations of the protein is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.