Abstract

Cavity solitons are persistent light pulses arising from the externally driven Kerr resonators. Thanks to the passive parametric gain, cavity soliton has been endowed with the natural advantage of the chip-scaled integration since it was first experimentally generated in the fiber-based platform. Deterministic single soliton with smooth spectrum is a preferred state for numerous applications. However, multiple solitons are more common in the resonators with anomalous dispersion. In this condition, adjacent solitons are easily perturbed to attract and collide with each other. Some experimental observations deviated from the aforementioned description have recorded the stable soliton intervals that can last for a long time scale. This phenomenon is known as soliton binding and is attributed to the presence of narrow resonant sidebands in the spectrum. While the stationary configuration of two binding solitons has been investigated, the dynamical evolution remains an area for further exploration. In this paper, we discuss the binding dynamics of the cavity solitons in the presence of high-order dispersion. The proposed theoretical predictions match well with the numerical results, encompassing both the stationary stable intervals and dynamic trajectories. Our research will provide a comprehensive insight into the soliton motion induced by the internal perturbations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call