Abstract
Transferrin, Tf, the protein that transports iron as Fe(III) from the blood to the tissues via endocytosis, is believed to also transport Cr(III). Under physiological conditions, Tf binds and releases Cr(III) rapidly from Cr(III)2-Tf; however, the major form of Tf in the bloodstream is mono-ferric Tf (Fe(III)-Tf). Given the low concentration of Cr(III) in the bloodstream, the form of Cr(III)-containing Tf that is transported is probably monochromic, monoferric-Tf (Cr(III),Fe(III)-Tf). Given that Tf has two specific metal-binding sites, one in both its C-terminal and its N-terminal lobe, two forms of Cr(III),Fe(III)-Tf can form. The binding of Cr(III) to mono-ferric Tf to generate both forms of Cr(III),Fe(III)-Tf has been examined in detail for the first time. The addition of Cr(III) to monoferric Tfs in 100mM HEPES and 25mM bicarbonate solution, pH 7.4, resulted in a rapid binding of Cr(III) to the open metal-binding site of the Tfs. Titrations of the monoferric Tfs with Cr(III) indicate the tight binding on one Cr(III) in each case. The binding of Cr(III) to monoferric Tfs is accompanied by conformational changes similar to adding two equivalents of Cr(III) to apoTf. Thus, mono-ferric Tfs bind one equivalent of Cr(III) rapidly and tightly to form mixed Cr(III),Fe(III)-Tfs. Cr(III) is probably transported as mixed Cr(III),Fe(III)-Tfs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.