Abstract

The use of biodegradable particles as oral delivery vehicles for macromolecular drugs was investigated. We evaluated the binding, uptake and absorption of poly- dl-lactide (PLA) micro- and nanoparticles in Caco-2 monolayers and in ileal tissue and gut associated lymphoid tissue (GALT) of anaesthetised rats and rabbits. Using a range of experimental techniques, we found that approximately 10% of administered micro- and nanoparticles were adsorbed to the apical membranes of each of the five intestinal models. Nanoparticles were found to be absorbed better than microparticles. Overall, little discrimination in uptake patterns was evident between Peyer's patch (PP) and non-PP tissue while rat ileum showed a greater uptake capacity than rabbit. Our results show that uptake of PLA particles was low capacity, size-dependent and predominantly transcellular in all systems. A low proportion of the apically-bound particles was absorbed, with uptake exclusion evident for particles >4μm. The affinity of PLA particles for intestinal epithelia and GALT needs to be greatly enhanced in order to achieve improved oral bioavailability of macromolecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.