Abstract
The momentum-space structure of the Faddeev-Yakubovsky (FY)components of weakly-bound tetramers is investigated at the unitary limit using a renormalized zero-range two-body interaction. The results, obtained by considering a given trimer level with binding energy $B_3$, provide further support to a universal scaling function relating the binding energies of two successive tetramer states. The correlated scaling between the tetramer energies comes from the sensitivity of the four-boson system to a short-range four-body scale. Each excited $N-$th tetramer energy $B_4^{(N)}$ moves as the short-range four-body scale changes, while the trimer properties are kept fixed, with the next excited tetramer $B_4^{(N+1)}$ emerging from the atom-trimer threshold for a universal ratio $B_4^{(N)}/B_3 = B_4^ {(N)}/B_4^{(N+1)} \simeq 4.6$, which does not depend on $N$. We show that both channels of the FY decomposition [atom-trimer ($K-$type) and dimer-dimer ($H-$type)] present high momentum tails, which reflect the short-range four-body scale. We also found that the $H-$channel is favored over $K-$channel at low momentum when the four-body momentum scale largely overcomes the three-body one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.