Abstract

Abstract The adhesion of biomembranes is mediated by the binding of membrane-anchored receptor and ligand proteins. The proteins can only bind if the separation between apposing membranes is sufficiently close to the length of the protein complexes, which leads to an interplay between protein binding and membrane shape. In this article, we review current models of biomembrane adhesion and novel insights obtained from the models. Theory and simulations with elastic-membrane and coarse-grained molecular models of biomembrane adhesion indicate that the binding of proteins in membrane adhesion strongly depends on nanoscale shape fluctuations of the apposing membranes, which results in binding cooperativity. A length mismatch between protein complexes leads to repulsive interactions that are caused by membrane bending and act as a driving force for the length-based segregation of proteins during membrane adhesion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.