Abstract

The interaction between positively charged consensus peptides and poly(acrylic acid) microgels was investigated with micromanipulator-assisted light microscopy and confocal laser scanning microscopy. Peptide binding and release was monitored by microgel deswelling and swelling for monodisperse multiples of heparin-binding Cardin and Weintraub motifs, (AKKARA)(n) (1 <or= n <or= 4) and (ARKKAAKA)(n) (1 <or= n <or= 3), as well as the corresponding titratable (AHHAHA)(4) and (AHHHAAHA)(3) peptides (A, K, R and H, refering to alanine, lysine, arginine, and histidine, respectively). When fully charged, these peptides distribute homogenously throughout the microgels and display concentration-dependent deswelling, which increases with increasing peptide length. Both (AKKARA)(4) and (ARKKAAKA)(3) display potent and fast microgel deswelling but only marginal subsequent electrolyte-induced desorption. In contrast, reducing the peptide charge for (AHHAHA)(4) and (AHHHAAHA)(3) at neutral and high pH, or the peptide length, substantially reduces the peptide affinity for the microgels and facilitates rapid peptide release. Taken together, the results also show that quite short peptides of moderate charge density interact strongly and cause extensive gel deswelling of oppositely charged microgels, precluding peptide release. They also show, however, that desirable triggered release can be achieved with peptides of lower charge density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call