Abstract
Lower rim amide linked 8-amino quinoline and 8-amino naphthalene moiety 1,3,5-triderivatives of calix[6]arene L1 and L2 have been synthesized and characterized. While the L1 acts as a receptor molecule, the L2 acts as a control molecule. The complexation between L1 and Cu(2+) or Zn(2+) was delineated by the absorption and electrospray ionization (ESI) MS spectra. The binding ability of these molecules toward biologically important metal ions was studied by fluorescence and absorption spectroscopy. The derivative L1 detects Zn(2+) by bringing ratiometric change in the fluorescence signals at 390 and 490 nm, but in the case of Cu(2+), it is only the fluorescence quenching of 390 nm band that is observed, while no new band is observed at 390 nm. The stoichiometry of both the complexes is 1:1 and was confirmed in both the cases by measuring the ESI mass spectra. The isotopic peak pattern observed in the ESI MS confirmed the presence of Zn(2+) or Cu(2+) present in the corresponding complex formed with L1. Among these two ions, the Cu(2+) exhibits higher sensitivity. The density-functional theory (DFT) studies revealed the conformational changes in the arms and also revealed the coordination features in the case of the metal complexes. The arm conformational changes upon Zn(2+) binding were supported by nuclear Overhauser effect spectrometry (NOESY) studies. The stronger binding of Cu(2+) over that of Zn(2+) observed from the absorption study was further supported by the complexational energies computed from the computational data. While the L1 exhibited spherical particles, upon complexation with Cu(2+), it exhibits chain like morphological features in scanning electron microscopy (SEM) but only small aggregates in the case of Zn(2+). Thus, even the microscopy data can differentiate the complex formed between L1 and Cu(2+) from that formed with Zn(2+).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.