Abstract

Porcine circovirus 2 (PCV2) is associated with post-weaning multisystemic wasting syndrome and reproductive problems in pigs. Cells of the monocyte/macrophage lineage are important target cells in PCV2-infected pigs, but the method of binding and entry of PCV2 into these cells is unknown. Therefore, binding and entry of PCV2 to the porcine monocytic cell line 3D4/31 were studied by visualization of binding and internalization of PCV2 virus-like particles (VLPs) by confocal microscopy and chemical inhibition of endocytic pathways (clathrin- and caveolae-mediated endocytosis and macropinocytosis), followed by evaluation of the level of PCV2 infection. It was shown that PCV2 VLPs bound to all cells, with maximal binding starting from 30 min post-incubation. Bound PCV2 VLPs were internalized in 47+/-5.0 % of cells. Internalization was continuous, with 70.5+/-9.7 % of bound PCV2 VLPs internalized at 360 min post-incubation. Internalizing PCV2 VLPs co-localized with clathrin. PCV2 infection was decreased significantly by chemical inhibitors that specifically blocked (i) actin-dependent processes, including cytochalasin D (75.5+/-7.0 % reduction) and latrunculin B (71.0+/-3.0 % reduction), and (ii) clathrin-mediated endocytosis, including potassium depletion combined with hypotonic shock (50.2+/-6.3 % reduction), hypertonic medium (56.4+/-5.7 % reduction), cytosol acidification (59.1+/-7.1 % reduction) and amantadine (52.6+/-6.7 % reduction). Inhibiting macropinocytosis with amiloride and caveolae-dependent endocytosis with nystatin did not decrease PCV2 infection significantly. PCV2 infection was reduced by the lysosomotropic weak bases ammonium chloride (47.0+/-7.9 % reduction) and chloroquine diphosphate (49.0+/-5.6 % reduction). Together, these data demonstrate that PCV2 enters 3D4/31 cells predominantly via clathrin-mediated endocytosis and requires an acidic environment for infection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.