Abstract
When group III metals are deposited onto the Si(100)-2 × 1 reconstructed surface they are observed to self-assemble into chains of atoms that are one atom high by one atom wide. To better understand this one-dimensional island growth, ab initio electronic structure calculations on the structures of Al atoms on silicon clusters have been performed. Natural orbital occupation numbers show that these systems display significant diradical character, suggesting that a multireference method is needed. A multiconfiguration self-consistent field (MCSCF) calculation with a 6-31G(d) basis set and effective core potentials was used to optimize geometries. The surface integrated molecular orbital molecular mechanics embedded cluster method was used to take the surface chemistry into account, as well as the structure of an extended surface region. Potential energy surfaces for binding of Al adatoms and Al−Al dimers on the surface were determined, and the former was used to obtain a preliminary assessment of the surface diffusion of adatoms. Hessians were calculated to characterize stationary points, and improved treatment of dynamic electron correlation was accomplished using multireference second order perturbation theory (MRMP2) single-point energy calculations. Results from the MRMP2//MCSCF embedded cluster calculations are compared with those from QM-only cluster calculations, embedded cluster unrestricted density functional theory calculations, and previous Car−Parrinello DFT studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.