Abstract

The binding of EcoR1 to a 90-bp DNA duplex attached to colloidal microparticles and the subsequent cleavage by the enzyme was observed in real time and label-free with time-resolved second harmonic (SH) spectroscopy. This method provides a unique way to investigate biomolecular interactions based on its sensitivity to changes in structure and electrical charge on formation of a complex and subsequent dynamics. The binding of EcoR1 to the recognition sequence in DNA appears as a rapid increase in the SH signal, which is attributed to the enzyme-induced change in the DNA conformation, going from a rod-like to a bent shape. In the presence of the cofactor Mg(2+), the subsequent decay in the SH signal was monitored in real time as the following processes occurred: cleavage of DNA, dissociation of the enzyme from the DNA, and diffusion of the 74-bp fragment into the bulk solution leaving the 16-bp fragment attached to the microparticle. The observed decay was dependent on the concentration of Mg(2+), which functions as a cofactor and as an electrolyte. With SH spectroscopy the rehybridization dynamics between the rehybridized microparticle bound and free cleaved DNA fragments was observed in real time and label-free following the cleavage of DNA. Collectively, the experiments reported here establish SH spectroscopy as a powerful method to investigate equilibrium and time-dependent biological processes in a noninvasive and label-free way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.