Abstract

Temporal binding via 40-Hz synchronization of neuronal discharges in sensory cortices has been hypothesized to be a necessary condition for the rapid selection of perceptually relevant information for further processing in working memory. Binocular rivalry experiments have shown that late stage visual processing associated with the recognition of a stimulus object is highly correlated with discharge rates in inferotemporal cortex. The hippocampus is the primary recipient of inferotemporal outputs and is known to be the substrate for the consolidation of working memories to long-term, episodic memories. The prefrontal cortex, on the other hand, is widely thought to mediate working memory processes, per se. This article reviews accumulated evidence for the role of a subcortical matrix in linking frontal and hippocampal systems to select and “stream” conscious episodes across time (hundreds of milliseconds to several seconds). “Streaming” is hypothesized to be mediated by the selective gating of reentrant flows of information between these cortical systems and the subcortical matrix. The physiological mechanism proposed for this temporally extended form of binding is synchronous oscillations in the slower EEG spectrum (< 8 Hz).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.