Abstract
Recently, significant progress has been made in the performance of supercapacitors through the development of composite electrodes that combine various charge storage mechanisms. A new method for preparing composite binder-free MnO2/MWCNT/Al electrodes for supercapacitors is proposed. The method is based on the original technique of direct growth of layers of multi-walled carbon nanotubes (MWCNTs) on aluminum foil by the catalytic pyrolysis of ethanol vapor. Binder-free MnO2/MWCNT/Al electrodes for electrochemical supercapacitors were obtained by simply treating MWCNT/Al samples with an aqueous solution of KMnO4 under mild conditions. The optimal conditions for the preparation of MnO2/MWCNT/Al electrodes were found. The treatment of MWCNT/Al samples in a 1% KMnO4 aqueous solution for 40 min increased the specific capacitance of the active material of the samples by a factor of 3, up to 100–120 F/g. At the same time, excellent adhesion and electrical contact of the working material to the aluminum substrate were maintained. The properties of the MnO2/MWCNT/Al samples were studied by electron probe microanalysis (EPMA), Raman spectroscopy, cyclic voltammetry (CV), and impedance spectroscopy. Excellent charge/discharge characteristics of composite electrodes were demonstrated. The obtained MnO2/MWCNT/Al electrodes maintained excellent stability to multiple charge-discharge cycles. After 60,000 CVs, the capacitance loss was less than 20%. Thus, this work opens up new possibilities for using the MWCNT/Al material obtained by direct deposition of carbon nanotubes on aluminum foil for the fabrication of composite binder-free electrodes of supercapacitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.