Abstract

Electrodes are one of the key components that influence the performance of all-vanadium redox flow batteries (VRFBs). A porous graphite felt with modified fiber surfaces that can provide a high specific activation surface is preferred as the electrode of a VRFB. In this study, a simple binder-free approach is developed for preparing stable carbon nanotube modified graphite felt electrodes (CNT-GFs). Heat-treated graphite felt electrodes (H-GFs) are dip-coated using CNT homogeneous solution. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) results conclude that CNT-GFs have less resistance, better reaction currents, and reversibility as compared to H-GF. Cell performances showed that CNT-GFs significantly improve the performance of a VRFB, especially for the CNT-GF served in the positive side of the VRFB. CNT presence increases the electrochemical properties of the graphite electrode; as a result, reaction kinetics for both VO2+/VO2+ and V3+/V2+ are improved. Positive CNT-GF (P-CNT-GF) configured VRFB exhibits voltage efficiency, coulombic efficiency, and energy efficiency of 85%, 97%, and 82%, respectively, at the operating current density of 100 mA cm-2. At high current density of 200 mA cm-2, the VRFB with P-CNT-GF shows 73%, 98%, and 72% of the voltage, coulombic, and energy efficiencies, respectively. The energy efficiency of the CNT-GF is 6% higher when compared with that of B-H-GF. The VRFB with CNT-GF can provide stable performance for 300 cycles at 200 mA cm-2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call