Abstract

In order to enhance the efficiency of radio frequency identification (RFID) and lower system computational complexity, this paper proposes three novel tag anticollision protocols for passive RFID systems. The three proposed protocols are based on a binary tree slotted ALOHA (BTSA) algorithm. In BTSA, tags are randomly assigned to slots of a frame and if some tags collide in a slot, the collided tags in the slot will be resolved by binary tree splitting while the other tags in the subsequent slots will wait. The three protocols utilize a dynamic, an adaptive, and a splitting method to adjust the frame length to a value close to the number of tags, respectively. For BTSA, the identification efficiency can achieve an optimal value only when the frame length is close to the number of tags. Therefore, the proposed protocols efficiency is close to the optimal value. The advantages of the protocols are that, they do not need the estimation of the number of tags, and their efficiency is not affected by the variance of the number of tags. Computer simulation results show that splitting BTSA's efficiency can achieve 0.425, and the other two protocols efficiencies are about 0.40. Also, the results show that the protocols efficiency curves are nearly horizontal when the number of tags increases from 20 to 4,000.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.