Abstract

In this paper, we propose and examine the performance of an approach multiclass SVM, based on binary tree and VNS algorithm. In order to solve real multiclass problems, a mapping of the original problem to several sub-problems is used to improve the performance of multiclass SVM. The proposed paradigm is composed of two steps; in the first, we start with the construction of binary tree, using a partitioning technique, where each node is a partition of two classes. In the second step, we calculate the optimal binary tree by VNS algorithm, with the aim to explore the search space and to avoid the problem of local minima, the search process of optimisation is guided by one-versus-all strategy. In the subject to improve the temporal complexity of multiclass SVM by reducing the support vectors number and decrease the recognition time. This combination leads to decrease the test time and improve the convergence of classifier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.