Abstract

The problem of designing bit-to-pattern mappings and power allocation schemes for orthogonal frequency-division multiplexing (OFDM) systems that employ subcarrier index modulation (IM) is considered. We assume the binary source conveys a stream of independent, uniformly distributed bits to the pattern mapper, which introduces a constraint on the pattern transmission probability distribution that can be quantified using a binary tree formalism. Under this constraint, we undertake the task of maximizing the achievable rate subject to the availability of channel knowledge at the transmitter. The optimization variables are the pattern probability distribution (i.e., the bit-to-pattern mapping) and the transmit powers allocated to active subcarriers. To solve the problem, we first consider the relaxed problem where pattern probabilities are allowed to take any values in the interval [0,1] subject to a sum probability constraint. We develop (approximately) optimal solutions to the relaxed problem by using new bounds and asymptotic results, and then use a novel heuristic algorithm to project the relaxed solution onto a point in the feasible set of the constrained problem. Numerical analysis shows that this approach is capable of achieving the maximum mutual information for the relaxed problem in low and high-SNR regimes and offers noticeable benefits in terms of achievable rate relative to a conventional OFDM-IM benchmark.

Highlights

  • A S A subclass of permutation modulation [1], index modulation (IM) has recently attracted significant interest [2], [3] due to its feature of “achieving more by doing less”

  • We concentrate our investigation on orthogonal frequency-division multiplexing (OFDM)-IM systems [9], because OFDM-IM is a primary user of the permutation modulation subclass that we study, and any results obtained for full binary trees would be directly applicable to other permutation modulation schemes

  • 3) We propose an efficient, heuristic algorithm that projects a relaxed pattern probability distribution onto the feasible set of distributions that obey the full binary tree constraints, and demonstrate that this method yields an achievable rate that is superior to a conventional OFDMIM benchmark

Read more

Summary

Introduction

A S A subclass of permutation modulation [1], index modulation (IM) has recently attracted significant interest [2], [3] due to its feature of “achieving more by doing less”.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.