Abstract

Increasing production and use of engineered nanoparticles (NPs) leads to their release into the aquatic environments where they can interact with other hazardous contaminants, such as heavy metals, and threaten aquatic organisms. This study considers the ecotoxicity of arsenic (III) and silica nanoparticles (nSiO2), individually and simultaneously, to the zebrafish (Danio rerio) using response surface methodology (RSM) under central composite design (CCD). The results revealed that in the treatments within the concentration range of 1 to 5mgL-1 arsenic and 1-100mgL-1 nSiO2, no mortality was observed after 96h. The optimal conditions for achieving the lowest effect of simultaneous toxicity in the concentration range of nSiO2 and arsenic were 100 and 7mgL-1, respectively. Accordingly, the desirable function of the predicted model was found to be 0.78. According to these results, arsenic is toxic for zebrafish. Importantly, exposure to nSiO2 alone did not cause acute toxicity in the studied species, while arsenic toxicity decreased by increasing the concentration of nSiO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.