Abstract

One of the important potential applications of computational geometry is in the field of computer graphics. One challenging computational problem in computer graphics is that of rendering scenes with nearly photographic realism. A major distinction in lighting and shading models in computer graphics is between local illumination models and global illumination models. Local illumination models are available with most commercial graphics software. In such a model the color of a point on an object is modeled as a function of the local surface properties of the object and its relation to a typically small number of point light sources. The other objects of scene have no effect. In contrast, in global illumination models, the color of a point is determined by considering illumination both from direct light sources as well as indirect lighting from other surfaces in the environment. In some sense, there is no longer a distinction between objects and light sources, since every surface is a potential emitter of (indirect) light. Two physical-based methods dominate the field of global illumination. They are ray tracing [8] and radiosity [3].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.