Abstract
To improve the signal detection performance of binary-sequence frequency hopping communication when the complementary channel is jammed, a binary-sequence frequency hopping communication system based on pseudo-random liner frequency modulation (LFM) is proposed. The transmitting end uses the chirp signal to carry out the in-band spread spectrum of the binary-sequence frequency hopping signal, and then sends it out through the radio frequency front end. At the receiving end, the received signal is dehopped and processed by fractional Fourier transform. The source information is obtained by sampling decision. Firstly, a binary-sequence frequency hopping system model based on pseudo-random LFM is constructed. Secondly, the bit error rate expression of anti-partial band jamming and follower jamming under the Rice channel is derived. The results show that this method has at least 5 dB performance gain than binary sequence frequency hopping for different parameter settings under partial band jamming and follower jamming, and the anti-jamming performance is significantly better than the conventional frequency hopping communication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.