Abstract

We investigate the electrical transport through mixed self-assembled monolayers of alkanemonothiols and alkanedithiols in large-area molecular junctions. To disentangle the role of the molecular length and the interfacial composition, monothiol–monothiol, dithiol–dithiol, and monothiol–dithiol binary combinations are studied. In all cases, we find that the resistance of these mixed SAMs appears to depend exponentially on the average number of carbon atoms, thus resembling monocomponent SAMs, whose resistance is known to depend exponentially on molecular length. However, in monocomponent SAMs this behavior has a single-molecule tunneling origin, which is not directly relevant for mixtures. Furthermore, in certain mixed SAMs the resistance decreases with increasing average layer thickness (the case of monothiol–dithiol systems). We suggest an explanation for the observed dependence of the resistance in the mixed SAMs on their composition within an equivalent circuit model based on a simple assumption concerning their microdomain structure. The simulated dependence is non-exponential but leads to a good agreement between calculated and measured resistances with only two fit parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.