Abstract

We analyze the main properties of binary relations, defined on a nonempty set, that arise in a natural way when dealing with real-valued functions that satisfy certain classical functional equations on two variables. We also consider the converse setting, namely, given binary relations that accomplish some typical properties, we study whether or not they come from solutions of some functional equation. Applications to the numerical representability theory of ordered structures are also furnished as a by-product. Further interpretations of this approach as well as possible generalizations to the fuzzy setting are also commented. In particular, we discuss how the values taken for bivariate functions that are bounded solutions of some classical functional equations define, in a natural way, fuzzy binary relations on a set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.