Abstract
The aim of this work is the three-dimensional (3-D) reconstruction of the left or right heart chamber from digital biplane angiograms. The approach used, the binary reconstruction, exploits the density information of subtracted ventriculograms from two orthogonal views in addition to the ventricular contours. The ambiguity of the problem is largely reduced by incorporating a priori knowledge of human ventricles. A model-based reconstruction program is described that is applicable to routinely acquired biplane ventriculographic studies. Prior to reconstruction, several geometric and densitometric imaging errors are corrected. The finding of corresponding density profiles and anatomical landmarks is supported by a biplane image pairing procedure that takes the movement of the gantry system into account. Absolute measurements are based on geometric isocenter calibration and a slice-wise density calibration technique. The reconstructed ventricles allow 3-D visualization and regional wall motion analysis independently of the gantry setting. The method is applied to clinical angiograms and tested in left- and right-ventricular phantoms yielding a well shape conformity even with few model information. The results indicate that volumes of binary reconstructed ventricles are less projection-dependent compared to volume data derived by purely contour-based methods. A limitation is that the heart chamber must not be superimposed by other dye-filled structures in both projections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.