Abstract

Bayer red mud (RM) occupies a large amount of land, which excessive Na+ seriously damages groundwater resources. In this research, a RM based cementitious material (RMC) composed of RM and ordinary Portland cement (OPC) was developed. It is interesting to find that a binary reaction consisting of cement hydration and geopolymer reaction in RMC. The mechanical and Na+ consolidation rate of RMC were improved by the synergistic effect of binary reaction. The results indicated that the compressive strength of RMC is the highest and reaches 32.5R OPC when the mass ratio of CaO/(SiO2+Al2O3) is 1.37, and the Na+ leaching concentration is environmentally acceptable. The 7 days compressive strength of RM-based cementitious material No.2 (RMC2) can reach 93.80% of that of 28 days. As the predominant hydration products, cement hydration product (Ca5(SiO4)2(OH)2) and geopolymer (CaAl2Si2O8·2H2O and Na3Al3Si3O12·2H2O) were principally responsible for the strength development of RMC2 at 7 days. The optimal densification microstructure and [SiO4] polymerization structure was presented in RMC2. The supreme Na+ consolidation rate was 99.23% in RMC2 due to the cooperation of physical fixation and [Si(Al)O4] charge balance principle. This paper provides a fresh theoretical guidance for the utilization of RM and its Na+ in building materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call