Abstract

Random projection is often used to project higher-dimensional vectors onto a lower-dimensional space, while approximately preserving their pairwise distances. It has emerged as a powerful tool in various data processing tasks and has attracted considerable research interest. Partly motivated by the recent discoveries in neuroscience, in this paper we study the problem of random projection using binary matrices with controllable sparsity patterns. Specifically, we proposed two sparse binary projection models that work on general data vectors. Compared with the conventional random projection models with dense projection matrices, our proposed models enjoy significant computational advantages due to their sparsity structure, as well as improved accuracies in empirical evaluations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.