Abstract

The inevitable challenge in conventional chemotherapy is to deliver the anticancer drugs to the dense population of tumors cells while minimizing the drug-associated side effects on the normal cells. Cancer cells' preference for glycolysis for energy production is well recognized. Intuitively, taking advantage of such cancer-associated metabolism would be a promising strategy for anticancer drug delivery with minimal side effects. In this investigation, we have designed a binary prodrug PDOX as a sequential drug delivery regimens to realize the combination therapy for cancer. As cancer cells exhibit abrupt metabolism with elevated pyruvate dehydrogenase kinase (PDK) activity, dichloroacetic acid (DCA, a well-known PDK inhibitor) was used in combination with anticancer drug doxorubicin (DOX). The designed molecular prodrug was activated selectively by cancer-associated esterase to deliver DCA and DOX, respectively, and induced synergetic effects. Hence, sequential targeted delivery of molecular prodrug PDOX offers a promising approach to overcome the offside drug toxicity, pharmacokinetics, and biodistribution of individuals and provide an alternative option for cancer treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call