Abstract
We report a new initiator stickiness method to fabricate micropatterned binary polymer brush surfaces, which are ideal platforms for studying cell adhesion behavior. The atom transfer radical polymerization (ATRP) initiator, ω-mercaptoundecyl bromoisobutyrate (MUDBr), is found to adsorb on several hosting polymer brushes, including poly[oligo(ethylene glycol)methyl ether methacrylate] (POEGMA), poly(2-hydroxyethyl methacrylate) (PHEMA), and poly(glycidyl methacrylate) (PGMA) brushes. Based on the initiator stickiness, micropatterned initiator molecules are printed onto a layer of homogenous hosting polymer brushes via microcontact printing (μCP), and then, vertically, a patterned second layer of polymer brushes is grown from the initiator areas. With this simple, fast, and additive method, we demonstrate the fabrication of various binary polymer brushes, and show their applications for patterning cell microarrays and controlling cell orientation. This new approach to generating binary polymer brushes shows great potential for the manipulation of interfacial phenomena, facilitating a range of applications from semiconductors and lubrication to fundamental cell biology studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.