Abstract
Boolean functions have very nice applications in coding theory and cryptography. In coding theory, Boolean functions have been used to construct linear codes in different ways. The objective of this paper is to construct binary linear codes with few weights using the defining-set approach. The defining sets of the codes presented in this paper are defined by some special Boolean functions and some additional restrictions. First, two families of binary linear codes with at most three or four weights from Boolean functions with at most three Walsh transform values are constructed and the parameters of their duals are also determined. Then several classes of binary linear codes with explicit weight enumerators are produced. Some of the binary linear codes are optimal or almost optimal according to the tables of best codes known maintained at http://www.codetables.de , and the duals of some of them are distance-optimal with respect to the sphere packing bound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.