Abstract

SUMMARYIn this paper, we use binary level set method and Merriman–Bence–Osher scheme for solving structural shape and topology optimization problems. In the binary level set method, the level set function can only take 1 and –1 values at convergence. Thus, it is related to phasefield methods. There is no need to solve the Hamilton–Jacobi equation so it is free of the CFL condition and the reinitialization scheme. This favorable property leads to the great time advantage of this method. We use additive operator splitting (AOS) and multiplicative operator splitting (MOS) schemes for solving optimization problems under some constraints In this work, we also combine the binary level set method with the Merriman–Bence–Osher scheme. The combined scheme is much more efficient than the conventional binary level set method. Several two‐dimensional examples are presented which demonstrate the effectiveness and robustness of proposed method. Copyright © 2011 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.