Abstract

Low- and high-pressure pyrolysis experiments employing tetradecane and 4-(1-naphthylmethyl)bibenzyl (NBBM) as model compounds for polyethylene and coal, respectively, were conducted at 420 °C at different reactant loadings both neat and in binary mixtures. These reaction sets demonstrated that when reacted in binary mixtures, the conversion of tetradecane increased while the selectivities to primary products of NBBM were enhanced in the gas phase. Variation of the relative concentrations of the components revealed that the effect was indeed a chemical one and not simply a result of dilution. As the polymer mimic to coal model compound ratio increased, there was a decrease in self-interactions of NBBM with minimal changes in the degradation products of tetradecane. Increasing the overall reaction pressure in the system through addition of an inert gas from atmospheric pressure to 2360 psig resulted in small decreases in reactant conversions and altered product distributions only slightly. Overall, the experiments carried out demonstrated that favorable interactions exist in the gas phase during coprocessing, and primary reaction pathways and mechanisms governing the interactions between the feedstocks were elucidated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.