Abstract

Suppose $f(x,y)$ is a binary form of degree $d$ with coefficients in a field $K \subseteq \mathbb C$. The $K$-rank of $f$ is the smallest number of $d$-th powers of linear forms over $K$ of which $f$ is a $K$-linear combination. We prove that for $d \ge 5$, there always exists a form of degree $d$ with at least three different ranks over various fields. The $K$-rank of a form $f$ (such as $x^3y^2$) may depend on whether -1 is a sum of two squares in $K$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.