Abstract

Relaxation and diffusion measurements were carried out on single and binary liquids filling the pore space of controlled porous glass Vycor with an average pore size of about 4 nm. The dispersion of the longitudinal relaxation time T1 is discussed as a means to identify liquid-surface interaction based on existing models developed for metal-free glass surfaces. In addition, the change of T1 and T2 with respect to their bulk values is discussed, in particular T2 serves as a probe for the strength of molecular interactions. As the native glass surface is polar and contains a large amount of hydroxyl groups, a pronounced interaction of polar and protic adsorbate liquids is expected; however, the T1 dispersion, and the corresponding reduction of T2, are also observed for non-polar liquids such as alkanes and cyclohexane. Deuterated liquids are employed for simplifying data analysis in binary systems, but also for separating the respective contributions of intra- and intermolecular interactions to the overall relaxation rate. Despite the lack of paramagnetic impurities in the glass material, 1H and 2H relaxation dispersions of equivalent molecules are frequently found to differ from each other, suggesting intermolecular relaxation mechanisms for the 1H nuclei. The variation of the T1 dispersion when comparing single and binary systems gives clear evidence for the preferential adsorption of one of the two liquids, suggesting complete phase separation in several cases. Measurement of the apparent tortuosity by self-diffusion experiments supports the concept of a local variation of sample composition within the porespace.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.