Abstract

AbstractHere we review how binary interactions affect the final pre-supernova structure of massive stars and the resulting supernova explosions. (1) Binary-induced mass loss and mass accretion determine the final envelope structure, the mass, radius and chemical composition, which are mainly responsible for the supernova appearance and supernova (sub-)type. (2) Mass loss can also drastically change the core evolution and hence the final fate of a star; specifically, around 10 M⊙, it determines whether a star explodes in a supernova or forms a white dwarf, while for larger masses it can dramatically increase the minimum main-sequence mass above which a star is expected to collapse to a black hole. (3) Mass loss before the supernova directly affects the circumstellar medium (CSM) which can affect the supernova spectrum (e.g. account for the IIn phenomenon), produce powerful radio emission and, in extreme cases, lead to a strong interaction with the supernova ejecta and thus strongly modify the lightcurve shape; it may even be responsible for some of the superluminous supernovae that have recently been discovered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call