Abstract

The valence-shell binding energy spectra (8–44 eV) and molecular orbital momentum distributions of OCS have been studied by non-coplanar symmetric binary (e,2e) spectroscopy. Existing theoretical binding energy spectra calculated using the many-body 2ph-TDA Green's function (GF) method and using the symmetry-adapted cluster (SAC) on method are compared with the experiment. Intense many-body structure in the measured and calculated binding energy spectra indicates the general breakdown of the independent particle ionization picture. Experimental momentum distributions are compared with those calculated using ab initio SCF wavefunctions of minimal basis set quality and of near Hartree—Fock quality. Excellent agreement between the experimental momentum distributions and those calculated by the near Hartree—Fock wavefunction is obtained for the three innermost valence orbitals: 8σ, 7σ and 6σ. The correct order of the close lying outer-valence 2π and 9σ orbitals is unambiguously identified from the shapes of the measured momentum distributions. Momentum and position contour density maps computed from theoretical wavefunctions of near Hartree—Fock quality are used to interpret the shapes and atomic characters of the observed momentum distributions. The momentum densities of the outermost-valence antibonding π orbitals and of the outermost-valence bonding σ orbitals of the linear triatomic group: CO 2, CS 2 and OCS are compared respectively with each other. The associated chemical trends are discussed within the existing framework of momentum-space chemical principles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.