Abstract
We study the interaction between an unequal mass binary with an isothermal circumbinary disk, motivated by the theoretical and observational evidence that after a major merger of gas-rich galaxies, a massive gaseous disk with a SMBH binary will be formed in the nuclear region. We focus on the gravitational torques that the binary exerts onto the disk and how these torques can drive the formation of a gap in the disk. This exchange of angular momentum between the binary and the disk is mainly driven by the gravitational interaction between the binary and a strong non-axisymmetric density perturbation that is produced in the disk, as response to the presence of the binary. Using SPH numerical simulations we tested two gap-opening criterion, one that assumes that the geometry of the density perturbation is an ellipsoid/thick-spirals and another that assumes a geometry of flat-spirals for the density perturbation. We find that the flat-spirals gap opening criterion successfully predicts which simulations will have a gap on the disk and which simulations will not have a gap on the disk. We also study the limiting cases predicted by the gap-opening criteria. Since the viscosity in our simulations is considerably smaller than the expected value in the nuclear regions of gas-rich merging galaxies, we conclude that in such environments the formation of a circumbinary gap is unlikely.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.