Abstract

Liquid organic hydrogen carrier (LOHC) systems constitute a very promising concept for future hydrogen storage and logistics. The concept builds on the conversion of excess renewable energy to hydrogen via electrolysis followed by reversible catalytic hydrogenation/dehydrogenation of a diesel-like organic carrier molecule. For an ideal design of the catalytic process, insight into reaction mechanisms and kinetics but also precise knowledge on mass transport properties are necessary. In the present study, binary diffusion coefficients in selected binary LOHC mixtures with five different compositions of perhydrodibenzyltoluene (H18-LOHC) and dibenzyltoluene (LOHC) were measured by dynamic light scattering (DLS). The compositions were defined by mixing appropriate amounts of LOHC and H18-LOHC to realize different hydrogenation degrees of the LOHC. Binary diffusion coefficients were investigated over a temperature range from (264 to 571) K with an absolute uncertainty of (3 to 25) %. Moreover, an empirical eq...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call