Abstract

Experimental binary diffusion coefficients for short-chain alcohols in supercritical carbon dioxide were measured using the Taylor dispersion technique in a temperature range of 306.15 K to 331.15 K and along the 10.5 MPa isobar. The obtained diffusion coefficients were in the order of 10-8 m2 s-1. The dependence of D on temperature and solvent density was examined together with the influence of molecular size. Some classic correlation models based on the hydrodynamic and free volume theory were used to estimate the diffusion coefficients in supercritical carbon dioxide. Predicted values were generally overestimated in comparison with experimental ones and correlations were shown to be valid only in high-density regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.