Abstract
Cyclotomic polynomials are basic objects in Number Theory. Their properties depend on the number of distinct primes that intervene in the factorization of their order, and the binary case is thus the first nontrivial case. This paper sees the vector of coefficients of the polynomial as a word on a ternary alphabet $\{-1,0 ,+1\}$. It designs an efficient algorithm that computes a compact representation of this word. This algorithm is of linear time with respect to the size of the output, and, thus, optimal. This approach allows to recover known properties of coefficients of binary cyclotomic polynomials, and extends to the case of polynomials associated with numerical semi-groups of dimension 2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.