Abstract

The dynamics of bodies under the combined action of the gravitational attraction and the radiative repelling force has large and deep implications in astronomy. In the 1920s, the Romanian astronomer Constantin Popovici proposed a modified photogravitational law (considered by other scientists too). This paper deals with the collisions of the two-body problem associated with Popovici?s model. Resorting to McGehee-type transformations of the second kind, we obtain regular equations of motion and define the collision manifold. The flow on this boundary manifold is wholly described. This allows to point out some important qualitative features of the collisional motion: existence of the black-hole effect, gradientlikeness of the flow on the collision manifold, regularizability of collisions under certain conditions. Some questions, coming from the comparison of Levi-Civita?s regularizing transformations and McGehee?s ones, are formulated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.